100V, 2A Peak, High Frequency Half-Bridge Drivers

The ISL2100A, ISL2101A are 100V, high frequency, half-bridge N-channel power MOSFET driver ICs. They are based on the popular HIP2100, HIP2101 half-bridge drivers, but offer several performance improvements. The ISL2100A has additional input hysteresis for superior operation in noisy environments and the inputs of the ISL2101A, like those of the ISL2100A, can now safely swing to the V_{DD} supply rail. Finally, both parts are available in a very compact 9 Ld DFN package to minimize the required PCB footprint.

Ordering Information

PART NUMBER (Notes 1, 2)	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL2100AAR3Z	$00 A Z$	-40 to 125	9 Ld 3x3 DFN	L9.3x3
ISL2101AAR3Z	$01 A Z$	-40 to 125	9 Ld 3x3 DFN	L9.3x3

NOTES:

1. Intersil Pb-free plus anneal products employ special Pb -free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb-free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.
2. Add "-T" suffix for Tape and Reel packing option.

Pinouts

ISL2100A, ISL2101A (DFN) TOP VIEW

NOTE: EPAD = Exposed PAD.

Features

- Drives N-Channel MOSFET Half-Bridge
- Space-Saving DFN Package
- DFN Package Compliant with 100V Conductor Spacing Guidelines per IPC-2221
- Pb-Free Plus Anneal Available (RoHS Compliant)
- Bootstrap Supply Max Voltage to 114VDC
- On-Chip 1Ω Bootstrap Diode
- Fast Propagation Times for Multi-MHz Circuits
- Drives 1nF Load with Typical Rise/Fall Times of 10ns
- CMOS Compatible Input Thresholds (ISL2100A)
- 3.3V/TTL Compatible Input Thresholds (ISL2101A)
- Independent Inputs Provide Flexibility
- No Start-Up Problems
- Outputs Unaffected by Supply Glitches, HS Ringing Below Ground or HS Slewing at High dv/dt
- Low Power Consumption
- Wide Supply Voltage Range (9 V to 14 V)
- Supply Undervoltage Protection
- 2.5Ω Typical Output Pull-Up/Pull-Down Resistance

Applications

- Telecom Half-Bridge Converters
- Telecom Full-Bridge Converters
- Two-Switch Forward Converters
- Active-Clamp Forward Converters
- Class-D Audio Amplifiers

Application Block Diagram

Functional Block Diagram

*EPAD = Exposed Pad. The EPAD is electrically isolated from all other pins. For best thermal performance connect the EPAD to the PCB power ground plane.

FIGURE 1. TWO-SWITCH FORWARD CONVERTER

FIGURE 2. FORWARD CONVERTER WITH AN ACTIVE-CLAMP

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{HB}}-\mathrm{V}_{\mathrm{HS}}$ (Notes 3, 4) -0.3 V to 18 V LI and HI Voltages (Note 4) -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Voltage on LO (Note 4) -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Voltage on HO (Note 4) $\mathrm{V}_{\mathrm{HS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{HB}}+0.3 \mathrm{~V}$
Voltage on HS (Continuous) (Note 4) -1V to 110 V
Voltage on HB (Note 4) . 118 V
Average Current in $V_{D D}$ to HB Diode 100mA

Thermal Information

Thermal Resistance (Typical)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
DFN (Note 5)	55	7.5

Max Power Dissipation at $25^{\circ} \mathrm{C}$ in Free Air (DFN, Note 5) 2.27W
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Junction Temperature Range. $55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering 10s - SOIC Lead Tips Only) . . $300^{\circ} \mathrm{C}$ For Recommended soldering conditions see Tech Brief TB389.

Maximum Recommended Operating Conditions

Supply Voltage, VDD . 9V to 14V
Voltage on HS . -1V to 100 V
Voltage on HS (Repetitive Transient) -5V to 105V
Voltage on $\mathrm{HB} \ldots \mathrm{V}_{\mathrm{HS}}+8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{HS}}+14 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+100 \mathrm{~V}$
HS Slew Rate. $<50 \mathrm{~V} / \mathrm{ns}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the recommended operating conditions of this specification is not implied.

NOTES:
3. The ISL2100A-01A are capable of derated operation at supply voltages exceeding 14V. Figure 22 shows the high-side voltage derating curve for this mode of operation.
4. All voltages referenced to V_{SS} unless otherwise specified.
5. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. For θ_{JC}, the "case temp" is measured at the center of the exposed metal pad on the package underside. See Tech Brief TB379 for details.

Electrical Specifications $\quad \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{HB}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{HS}}=0 \mathrm{~V}$, No Load on LO or HO, Unless Otherwise Specified

PARAMETERS	SYMBOL	TEST CONDITIONS	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
			MIN	TYP	MAX	MIN	MAX	
SUPPLY CURRENTS								
$V_{\text {DD }}$ Quiescent Current	I_{DD}	ISL2100A; LI $=\mathrm{HI}=0 \mathrm{~V}$	-	0.1	0.25	-	0.3	mA
$V_{\text {DD }}$ Quiescent Current	IDD	ISL2101A; LI = HI = 0V	-	0.3	0.45	-	0.55	mA
$\mathrm{V}_{\text {DD }}$ Operating Current	IDDO	ISL2100A; f = 500kHz	-	1.6	2.2	-	2.7	mA
$\mathrm{V}_{\text {DD }}$ Operating Current	IDDO	ISL2101A; f = 500kHz	-	1.9	2.5	-	3	mA
Total HB Quiescent Current	I_{HB}	$L I=H I=0 V$	-	0.1	0.15	-	0.2	mA
Total HB Operating Current	$\mathrm{I}_{\mathrm{HBO}}$	$\mathrm{f}=500 \mathrm{kHz}$	-	2.0	2.5	-	3	mA
HB to $\mathrm{V}_{\text {SS }}$ Current, Quiescent	$\mathrm{I}_{\mathrm{HBS}}$	$\mathrm{LI}=\mathrm{HI}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{HB}}=\mathrm{V}_{\mathrm{HS}}=114 \mathrm{~V}$	-	0.05	1	-	10	$\mu \mathrm{A}$
HB to $\mathrm{V}_{\text {SS }}$ Current, Operating	IHBSO	$\mathrm{f}=500 \mathrm{kHz} ; \mathrm{V}_{\mathrm{HB}}=\mathrm{V}_{\mathrm{HS}}=114 \mathrm{~V}$	-	0.9	-	-	-	mA
INPUT PINS								
Low Level Input Voltage Threshold	$\mathrm{V}_{\text {IL }}$	ISL2100A	3.7	4.4	-	2.7	-	V
Low Level Input Voltage Threshold	$\mathrm{V}_{\text {IL }}$	ISL2101A	1.4	1.8	-	1.2	-	V
High Level Input Voltage Threshold	V_{IH}	ISL2100A	-	6.6	7.4	-	8.4	V
High Level Input Voltage Threshold	V_{IH}	ISL2101A	-	1.8	2.2	-	2.4	V
Input Voltage Hysteresis	$\mathrm{V}_{\text {IHYS }}$	ISL2100A	-	2.2	-	-	-	V
Input Pull-down Resistance	R_{I}		-	210	-	100	500	$\mathrm{k} \Omega$
UNDER VOLTAGE PROTECTION								
$\mathrm{V}_{\text {DD }}$ Rising Threshold	$V_{\text {DDR }}$		6.8	7.3	7.8	6.5	8.1	V
$\mathrm{V}_{\text {DD }}$ Threshold Hysteresis	$V_{\text {DDH }}$		-	0.6	-	-	-	V
HB Rising Threshold	$\mathrm{V}_{\text {HBR }}$		6.2	6.9	7.5	5.9	7.8	V
HB Threshold Hysteresis	$\mathrm{V}_{\mathrm{HBH}}$		-	0.6	-	-	-	V

Electrical Specifications $\quad \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{HB}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{HS}}=0 \mathrm{~V}$, No Load on LO or HO, Unless Otherwise Specified (Continued)

PARAMETERS	SYMBOL	TEST CONDITIONS	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
			MIN	TYP	MAX	MIN	MAX	

BOOT STRAP DIODE

Low Current Forward Voltage	V_{DL}	$I_{\text {VDD-HB }}=100 \mu \mathrm{~A}$	-	0.5	0.6	-	0.7	V
High Current Forward Voltage	V_{DH}	$I_{\text {VDD-HB }}=100 \mathrm{~mA}$	-	0.7	0.9	-	1	V
Dynamic Resistance	R_{D}	$I_{\text {VDD-HB }}=100 \mathrm{~mA}$	-	0.8	1	-	1.5	Ω

LO GATE DRIVER

Low Level Output Voltage	$\mathrm{V}_{\mathrm{OLL}}$	$\mathrm{I}_{\mathrm{LO}}=100 \mathrm{~mA}$	-	0.25	0.3	-	0.4	V
High Level Output Voltage	$\mathrm{V}_{\mathrm{OHL}}$	$\mathrm{I}_{\mathrm{LO}}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OHL}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LO}}$	-	0.25	0.3	-	0.4	V
Peak Pull-Up Current	$\mathrm{I}_{\mathrm{OHL}}$	$\mathrm{V}_{\mathrm{LO}}=0 \mathrm{~V}$	-	2	-	-	-	A
Peak Pull-Down Current	I OLL	$\mathrm{V}_{\text {LO }}=12 \mathrm{~V}$	-	2	-	-	-	A

HO GATE DRIVER

Low Level Output Voltage	$\mathrm{V}_{\mathrm{OLH}}$	$\mathrm{I}_{\mathrm{HO}}=100 \mathrm{~mA}$	-	0.25	0.3	-	0.4	V
High Level Output Voltage	$\mathrm{V}_{\mathrm{OHH}}$	$\mathrm{I}_{\mathrm{HO}}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OHH}}=\mathrm{V}_{\mathrm{HB}}-\mathrm{V}_{\mathrm{HO}}$	-	0.25	0.3	-	0.4	$\mathrm{~V}^{2}$
Peak Pull-Up Current	$\mathrm{I}_{\mathrm{OHH}}$	$\mathrm{V}_{\mathrm{HO}}=0 \mathrm{~V}$	-	2	-	-	-	A
Peak Pull-Down Current	$\mathrm{I}_{\mathrm{OLH}}$	$\mathrm{V}_{\mathrm{HO}}=12 \mathrm{~V}$	-	2	-	-	-	A

Switching Specifications $\quad \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{HB}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{HS}}=0 \mathrm{~V}$, No Load on LO or HO, Unless Otherwise Specified

PARAMETERS	SYMBOL	TEST CONDITIONS	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \\ \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		UNITS
			MIN	TYP	MAX	MIN	MAX	
Lower Turn-Off Propagation Delay (LI Falling to LO Falling)	$\mathrm{t}_{\text {LPHL }}$		-	34	50	-	60	ns
Upper Turn-Off Propagation Delay (HI Falling to HO Falling)	$\mathrm{t}_{\mathrm{HPHL}}$		-	31	50	-	60	ns
Lower Turn-On Propagation Delay (LI Rising to LO Rising)	$t_{\text {LPLH }}$		-	39	50	-	60	ns
Upper Turn-On Propagation Delay (HI Rising to HO Rising)	$\mathrm{t}_{\mathrm{HPLH}}$		-	39	50	-	60	ns
Delay Matching: Upper Turn-Off to Lower Turn-On	$\mathrm{t}_{\mathrm{MON}}$		1	8	-	-	16	ns
Delay Matching: Lower Turn-Off to Upper Turn-On	$\mathrm{t}_{\text {MOFF }}$		1	6	-	-	16	ns
Either Output Rise/Fall Time (10\% to 90\%/90\% to 10\%)	$\mathrm{t}_{\mathrm{RC},} \mathrm{t}_{\mathrm{F}} \mathrm{C}$	$C_{L}=1 \mathrm{nF}$	-	10	-	-	-	ns
Either Output Rise/Fall Time (3 V to $9 \mathrm{~V} / 9 \mathrm{~V}$ to 3 V)	$\mathrm{t}_{\mathrm{R}, \mathrm{t}_{\mathrm{F}}}$	$C_{L}=0.1 \mu \mathrm{~F}$	-	0.5	0.6	-	0.8	us
Minimum Input Pulse Width that Changes the Output	tPW		-	-	-	-	50	ns
Bootstrap Diode Turn-On or Turn-Off Time	$t_{B S}$		-	10	-	-	-	ns

Pin Descriptions

SYMBOL	DESCRIPTION
V $_{\text {DD }}$	Positive supply to lower gate driver. Bypass this pin to $\mathrm{V}_{\text {SS. }}$
HB	High-side bootstrap supply. External bootstrap capacitor is required. Connect positive side of bootstrap capacitor to this pin. Bootstrap diode is on-chip.
HO	High-side output. Connect to gate of high-side power MOSFET.
HS	High-side source connection. Connect to source of high-side power MOSFET. Connect negative side of bootstrap capacitor to this pin.
HI	High-side input.
LI	Low-side input.
$\mathrm{V}_{\text {SS }}$	Chip negative supply, which will generally be ground.
LO	Low-side output. Connect to gate of low-side power MOSFET.
EPAD	Exposed pad. Connect to ground or float. The EPAD is electrically isolated from all other pins.

Timing Diagrams

FIGURE 3. PROPAGATION DELAYS

Typical Performance Curves

FIGURE 5. ISL2100A IDD OPERATING CURRENT vs FREQUENCY

FIGURE 4. DELAY MATCHING

FIGURE 6. ISL2101A IDD OPERATING CURRENT vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 7. IHB OPERATING CURRENT vs FREQUENCY

FIGURE 9. HIGH LEVEL OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 11. UNDERVOLTAGE LOCKOUT THRESHOLD vs TEMPERATURE

FIGURE 8. IHBS OPERATING CURRENT vs FREQUENCY

$$
\because V D D=V H B=9 V
$$

$$
\cdots \quad V D D=V H B=12 V
$$

$$
--V D D=V H B=14 V
$$

FIGURE 10. LOW LEVEL OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 12. UNDERVOLTAGE LOCKOUT HYSTERESIS vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 13. ISL2100A PROPAGATION DELAYS vs TEMPERATURE

FIGURE 15. ISL2100A DELAY MATCHING vs TEMPERATURE

FIGURE 17. PEAK PULL-UP CURRENT vs OUTPUT VOLTAGE

FIGURE 14. ISL2101A PROPAGATION DELAYS vs TEMPERATURE

FIGURE 16. ISL2101A DELAY MATCHING vs TEMPERATURE

FIGURE 18. PEAK PULL-DOWN CURRENT vs OUTPUT VOLTAGE

Typical Performance Curves (Continued)

FIGURE 19. ISL2100A QUIESCENT CURRENT vs VOLTAGE

FIGURE 21. BOOTSTRAP DIODE I-V CHARACTERISTICS

FIGURE 20. ISL2101A QUIESCENT CURRENT vs VOLTAGE

FIGURE 22. VHS VOLTAGE vs VDD VOLTAGE

Dual Flat No-Lead Plastic Package (DFN)

FOR ODD TERMINALISIDE

L9.3x3
9 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE

SYMBOL	MILLIMETERS			NOTES
	0.80	0.90	1.00	
A1	-	-	0.05	-
A3	0.20 REF			-
b	0.20	0.25	0.30	4,7
D	3.00 BSC			
D2	1.85	2.00	2.10	6,7
E	3.00 BSC			
E2	0.80	0.95	1.05	6,7
e	0.50 BSC			-
k	0.60	-	-	-
L	0.25	0.35	0.45	7
N	9			

Rev. 0 3/06
NOTES:

1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. All dimensions are in millimeters. Angles are in degrees.
4. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
5. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.
6. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
7. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
8. COMPLIANT TO JEDEC MO-229-WEED-3 except for dimensions E2 \& D2.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

